import logging
from typing import Dict, List, Optional
from langchain.schema import AIMessage, BaseMessage, HumanMessage
from langchain_core.outputs.llm_result import LLMResult
from openai import OpenAI
from .chat_client import ClientBase
from .langchain_integration import get_langchain_chat_models_info
logger = logging.getLogger(__name__)
# Introspect langchain for supported models
chat_models_info = get_langchain_chat_models_info()
class FakeChatClient(ClientBase):
def interact(self, history: List[Dict[str, str]], messages: List[Dict[str, str]]) -> Dict[str, str]:
return {"role": "assistant", "content": "FakeChat response"}
[docs]
class ClientLangChain(ClientBase):
"""
Wrapper for interacting with models through LangChain.
Parameters
----------
backend : str
The backend name to use for model initialization.
system_prompts : Optional[List[str]]
List of system prompts for initializing the conversation context (optional).
**kwargs
Additional arguments passed to the model's constructor.
Methods
-------
_convert_to_base_format(message: BaseMessage) -> Dict[str, str]
Converts a LangChain message (HumanMessage, AIMessage) to the base format (Dict with "role" and "content").
_convert_to_langchain_format(message: Dict[str, str]) -> BaseMessage
Converts a message from the base format (Dict) to LangChain's format (HumanMessage, AIMessage).
interact(history: List[Dict[str, str]], messages: List[Dict[str, str]]) -> Dict[str, str]
Takes conversation history and new messages, sends a request to the model, and returns the response as a dictionary.
"""
def __init__(
self,
backend: str,
system_prompts: Optional[List[str]] = None,
model_description: Optional[str] = None,
**kwargs,
):
chat_models_info = get_langchain_chat_models_info()
if backend in chat_models_info:
self.client = chat_models_info[backend].model_cls(**kwargs)
else:
raise ValueError(
f"Invalid backend name: {backend}. Supported backends: {', '.join(chat_models_info.keys())}"
)
self.system_prompts = system_prompts
self.model_description = model_description
[docs]
def interact(self, history: List[Dict[str, str]], messages: List[Dict[str, str]]) -> Dict[str, str]:
"""
Takes conversation history and new messages, sends a request to the model, and returns the response.
Parameters
----------
history : List[Dict[str, str]]
The conversation history.
messages : List[Dict[str, str]]
New messages to be processed.
Returns
-------
Dict[str, str]
The response from the model in dictionary format with "role" and "content".
"""
langchain_history = [ClientLangChain._convert_to_langchain_format(msg) for msg in history]
langchain_messages = [ClientLangChain._convert_to_langchain_format(msg) for msg in messages]
langchain_history += langchain_messages
try:
llm_result: LLMResult = self.client.generate(messages=langchain_history)
response_message: BaseMessage = AIMessage(content=llm_result.generations[0][0].text)
except Exception as e:
raise RuntimeError(f"Chat inference failed with error: {e}")
return ClientLangChain._convert_to_base_format(response_message)
[docs]
class ClientOpenAI(ClientBase):
"""
Wrapper for interacting with OpenAI-compatible API.
This client can be used to interact with any language model that supports the OpenAI API, including but not limited to OpenAI models.
Parameters
----------
api_key : str
The API key for authentication.
base_url : str
The base URL of the OpenAI-compatible API.
model : str
The model identifier to use for generating responses.
temperature : float
The temperature setting for controlling randomness in the model's responses.
system_prompts : Optional[List[str]]
List of system prompts for initializing the conversation context (optional).
model_description : str
Description of the model, including domain and other features (optional).
Methods
-------
_convert_to_base_format(message: Dict[str, str]) -> Dict[str, str]
Converts a message from OpenAI format (Dict) to the base format (Dict with "role" and "content").
_convert_to_openai_format(message: Dict[str, str]) -> Dict[str, str]
Converts a message from the base format (Dict with "role" and "content") to OpenAI's format (Dict).
interact(history: List[Dict[str, str]], messages: List[Dict[str, str]]) -> Dict[str, str]
Takes conversation history and new messages, sends a request to the OpenAI-compatible API, and returns the response.
"""
def __init__(
self,
api_key: str,
base_url: str,
model: str,
temperature: float = 0.1,
system_prompts: Optional[List[str]] = None,
model_description: Optional[str] = None,
):
self.client = OpenAI(api_key=api_key, base_url=base_url)
self.model = model
self.temperature = temperature
self.system_prompts = system_prompts
self.model_description = model_description
[docs]
def interact(self, history: List[Dict[str, str]], messages: List[Dict[str, str]]) -> Dict[str, str]:
"""
Takes conversation history and new messages, sends a request to the OpenAI-compatible API, and returns the response.
Parameters
----------
history : List[Dict[str, str]]
The conversation history.
messages : List[Dict[str, str]]
New messages to be processed.
Returns
-------
Dict[str, str]
The response from the model in dictionary format with "role" and "content".
"""
# Convert history and new messages to OpenAI format
openai_history = [self._convert_to_openai_format(msg) for msg in history]
openai_messages = [self._convert_to_openai_format(msg) for msg in messages]
# Add new messages to the history
openai_history += openai_messages
try:
# Send the history to the model and get the result
completion = self.client.chat.completions.create(
model=self.model,
messages=openai_history,
temperature=self.temperature,
)
# Extract the response text from the API
response_content = completion.choices[0].message.content
response_message = {"role": "assistant", "content": response_content}
except Exception as e:
logger.warning(f"Chat inference failed with error: {e}")
raise
# Convert the response to base format
return self._convert_to_base_format(response_message)